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TIME-DOMAIN ANALYSIS OF LUMPED/DISTRIBUTED

NETWORKS FOR EMC APPLICATIONS

1.0 INTRODUCTION

Time-domain analysis of electronic networks, which deliberately or

inadvertently incorporate transmission lines and other distributed elements,

is increasingly important in EMC applications. Digital systems used for

control, communications and computation must routinely process high speed

pulses. Lightning, EMP and various other effects can induce unwanted pulses

into both analog and digital systems. Compatibility analysis requires the

ability to treat pulses in such systems under both normal and abnormal

conditions. Shielding requirements and/or potential interference levels must

be evaluated. Coupled transmission lines, branched cable bundles, and other

complex combinations of wires frequently occur. Transmission lines can also

be used to model a variety of electromagnetic shields.

The purpose of this report is to introduce and describe a new technique

[1] suitable for the time-domain analysis of a very general class of lumped,

distributed networks. An incidental but powerful feature of the new technique

is that the same system equation formulation procedure yields either time-domain

or frequency-domain equations. Considerable saving results when both

frequency and time solutions are to be obtained. In the current report the

basic procedure is described and illustrated with examples. The analysis

procedure can also be used to generate time-domain models of transmission

lines and other complex structures. This feature is illustrated by generating

an exceptionally simple model for lossless transmission lines. Finally, a

novel concept using time-varying reflection coefficients is introduced.
1
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It should be emphasized that the procedure to be described is very

general and applicable to a broad class of problems. Further applications and

in particular time-domain models for lossy transmission lines and coupled

line structures will be covered in future reports.

Accession For

NTIS 'r.
DTIC T"

Justi..-

DistrI- t'
Ava 11 o. : ',.s

Dist .

71 2

It .



2.0 TIME-DOMAIN ANALYSIS OF LUMPED/DISTRIBUTED NETWORKS

Time-domain analysis of lumped element networks is well established.

Powerful analytical and numerical technqiues are readily available, including

the popular state-space and Laplace-transform methods. General purpose

computer programs such as SCEPTRE [2] and SPICE [3] provide easy-to-implement

time-domain solutions for complex lumped systems even when nonlinear, time-

varying, and/or active elements are included.

The development of methods for transient analysis of mixed lumped-distributed

networks is of relatively recent origin, and general techniques that permit,

for example, lossy transmission lines of arbitrary lengths and nonlinear active

lumped elements are not yet available. Yet, as pointed out above, the time-

domain analysis of such networks is increasingly important in EMC analysis and

prediction as well as normal design considerations for a variety of pulse

processing systems inlcuded in communications, control, computing and radar

applications. The technique to be described is widely applicable to the

analysis of such systems.

During the course of this study, a substantial literature search was

carried out. The most pertinent articles and books are listed for the reader's

convenience [4-18]. While the technique to be presented is significantly

different from the methods found in the literature, the present concept grew

from "wouldn't it be nice if ... " considerations following a reading of

Silverberg's [4] paper. The new technique has been successfully applied to a

wide variety of problems. The impact of Silverberg's work is gratefully

acknowledged.

2.1 SYSTEM1 EQUATION FORMULATION: Part I

Assume that the system for EMC analysis has a network model consisting of

interconnections of linear distributed elements, dependent sources, and

3



independent sources. Partition the network into two parts as shown in Figure 1.

One part consists of linear (distributed and/or lumped) elements. The other

part contains any lumped nonlinear or time-varying elements and independent

sources.

Linear, -.Pr- ind Nonlinear,

Distributed and fe nyoin-athnc

terminal~~---- tiedmitecito ynmrcl ivrtrnsfrg ehius h

Lumped Elements -- -tlu p d e m nt

• plus sources

Figure 1. Partitioned network

Silverberg's [4] procedure is to solve for the terminal behavior of the

linear part of the network in the frequency domain and then convert to a

time domain solution for the whole network is obtained step by step in time

at the interface of the two parts by simultaneous solution of a convolution

equation representing the linear part and a differential equation representing

the nonlinear part. The simultaneous solution is accomplished at each time

increment by solving algebraic equations obtained by application of the trape-

zoidal integration rule to the original equations.

For the moment let us focus our attention on the linear part of the network.

Wouldn't it be nice if the frequency domain calculations and the inverse

transform calculations could be eliminated and all calculations be performed

directly in the time domain? Computer program complexity, memory requirements,

and computational time could all be significantly reduced. The catch is that

we would need a way of combining element descriptions to form network
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descriptions such that the resulting network matrix is directly compatible with

convolution solutions. Basically this implies that the overall system matrix

should contain only sums or differences of individual element responses (no

products or quotients allowed). The indefinite admittance matrix [19] appeared

a good possibility, but because of the type of systems to be considered, a port-

description method rather than a terminal description method was desired.

Kron's transformation methods [20] provided the inspiration for the technique

to be described. Ultimately, it became clear that for the present requirements,

the formal transformation techniques could be replaced by a very simple

algorithm. The more general Kron's method is first presented and then the

revised and simplified algorithm is introduced via examples.

At this point, the problem statement for the linear part of the network

is the following. Determine a scheme for representing networks such that given

the terminal step-response of the subnetworks (or elements) in the time domain,

the time-domain terminal step-response for the connected overall network can be

determined as sums and differences of the individual subnetwork responses. Then

by convolution the time-domain terminal response of the overall network can be

determined for any specified set of inputs.

2.1.1 Kron's Method

Short-circuit admittance parameters will be used. A dual impedance formu-

lation has also been used successfully. Following Kron [20], let

I = YV

be the given matrix equation for a network, where I is the current vector,
4.+ 4-4.

V is the voltage vector, and Y is the admittance matrix. Suppose a new matrix

equation ' = Y'V' is desired for the given network, where V', V', and ' are

the new current, voltage and admittance quantities, respectfully. Let the

relationship between the old and new voltage quantities be
5



V =CV'

where C is the voltage transformation matrix. In most cases the elements of

C wiii be l's and O's.

Power in the network must be the same for either choice of variables,

since the network is in no way changed by the change of variables. Thus,

V I = V1 I,t t

must be true where subscript "'t" indicates "~matrix transpose' and superscript

""indicates "complex conjugate." Substituting V C V' yields

V t C tI= V I'V

so that

I' =C tI

and

Y' C YGC
t

Collecting the above results yields the necessary relationships between old

and new network quantities. Associating the "old" (unprimed) quantities with

the disconnected subnetworks and the "new" (primed) quantities with the inter-

connected subnetworks leads to an algorithm for generating the system equations.

The pertinent equations are given below.

First establish the relationship between the "new" and "old" voltage

quantities to generate the transformation matrix, C.

V C CV, (1)

Next determine the "new" admittance matrix from the "old" admittance matrix

and the transformation matrix obtained from Equation I.

y = C Y c (HI)

The "new" system equation can then be written.



= It V' (III)

The "new" currents can be related to the "old" currents and the transformation

matrix.

I' = C I (IV)

This procedure is best understood through examples.

2.1.2 Combining Subnetworks/Simplified Method

Initially Kron's method is used. However, it will be shown that the

constraint of allowing only addition or subtraction of subnetwork matrix

elements leads to a simple algorithm that eliminate a number of steps from

jKron's procedure. The underlying feature of the simplified method is to treat

every kind of connection as though it is a parallel connection. This approach

requires that open-circuited ports be added to the network in certain situations.

Such additional ports are like ideal voltmeter connections enabling determination

of voltage at that point in the network without disturbing the system. The

added open-circuited ports increase the size of the system matrix but the

associated currents are zero and the overall system matrix is sparse. The net

effect of this type of transformation on computational efficiency has thus far

seemed to be increased efficiency. The following examples illustrate the

conversion from Kron's method to the simplified algorithm.

2.1.2.1 Example 1

Given the 2-port networks "A" and "B," each represented by its admittance

matrix as shown in Figure 2a, create a 3-port network by connecting ports 1

and 3 in parallel as shown in Figure 2b. Determine the admittance matrix of

the 3-port in terms of the original unconnected 2-ports.

Following Kron's method, first generate the "primitive" admittance matrix

for the unconnected subnetworks.

7



II  12

~20 Ai+-*AA-2
13 I 2y 2 v 2

4 4

0 *-I 12 0

A y

n2 3 !t 4

B yB

30 0I 4

(a) (b)

Figure 2.a) Two unconnected 3-ports
b) 2-ports "A" and "B" interconnected

to form a 3-port

1 2 3 4

A A
11  0 0

2 Y A yA 0 0
21 22

y SUB =B B()

3 0 0 B yB

'21 '22
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Next the connection matrix relating "old" to "new" voltage variables is

generated as in Equation I.

Vold =C v (2)

1' 2' 3'

V 1 1 1 0 0 VI
1, 1

v2 2 0 1 0
= -V 2  (3)

V 3  3 1 0 0

4 0 0 1

Now the 3-port admittance matrix can be determined using Equation II.

Y3-Port = t YSUB C (4)

1 2 3 4 1 2 3 4 1' 2' 4'

i' 1 0 1 0 1 A YA 0 0 1 1 0 0
11 12

2' 0 1 0 0 2 .A. YA 0 0 2 0 1 0
3-Port 4 0 0 0 1 B B 3

3 0 0 YIB YI2 3 1 0 011 12

4B B 4 004 0 0 Y21 22

1' 2' 4'
it ( A-+ B A ' B
S (Y1 1  YII) Y1  2  Y1 2

3-Port 21 22

4' B BY21 0 22

Notice that the transformation resulting from connecting ports 1 and 3

in parallel to form the new port 1' yields a Y-matrix which could have been

obtained by adding rows I and 3 and columns I and 3 of YSUB to form the 1' row

9



and column of Y 3-Port" Furthermore, only addition of individual subnetwork

elements are required in generating Y3-Port for the connected network.

The "new" system equation can now be written.

i' 2' 4'

(Y' + Y B) Y A Y B V

2' YA B A yB
2I21 22 V2(

i' 41 Y B 0 ~BV4
21 '22

This result is very promising. Is there some way other types of connections

could be looked upon as parallel connections so that the same simple results

can be utilized in more complex situations? To test this idea, consider the

cascade connection.

2.1.2.2 Example 2

As a second example, consider the cascade connection of the two 2-ports

as shown in Figure 3a. Common practice would have us multiply the individual

ABCD parameters to obtain the new ABCD parameters for the cascade connection.

However, we now wish to use Y-parameters, to avoid products and quotients of

individual terms in our overall description, and to treat the connection as

though it is "parallel" if possible. This can be accomplished as follows. Add

a port 3' in parallel with port 3. Notice that the cascade connection shown

in Figure 3a to form a new 2-port can now be treated as a parallel combination

of ports 2 and 3 to form a new 3-port as shown in Figure 3b. If port 3' is

open-circuited, then physically the networks of Figure 3a and 3b are identical.

However, the mathematical descriptions are different. In the first case the

resulting network is treated as a 2-port, while in the latter case it is treated

as a 3-port with I' - 0. The resulting Y-matrix for the cascade connection
3

treated as a constrained (I; = 0) 3-port is determined as follows. First form

the Y-matrix for the unconnected subnetworks.

10



1 2 3 3 4

1 A A 02

2 Y A Y A 0 0
21 22

SUB ~B B
3 0 0 Y11 Y12

4 0 YB YB
4 ~ ~ 2 0 'i '22

Y 2 3 Y4
0A B0

YAr A'K 22

(a)

i'1 Y A 2 3 YB 4 4

Port 3' Open-circuited

Figure 3.a) Cascade connection of 2-ports
b) Cascade connection treated as a

parallel connection with added
open-circuited port

The rows and columns of Y SUB corresponding to ports to be connected in parallel

are now added. Ports 2 and 3 combine to form port 3', while ports 1 and 4

become 1' and 4', respectively. The result is the desired Y-matrix for the

cascade combination treated as a constrained 3-port.

....... .... .... . .... .......



1' 2' 4'

1' A yA 0
Y11 12

Y= A ' A - B ' B (8)
YCASCADE 2' Y21 Y22 + Yll YB

(1; 0) 21 22 11 12
4i ,' B B "

4' 0 Y21 Y22

This representation of a cascade connection involves only sums of the subnetwork

element admittances. The new system equation is as follows.

1' 2' 4'

i' A f A 0 

11 12 1

A A B B
0 =2' "'2 Y 2 y1 + 1  (9)

S21 Y22 YI Y2 V3

1' 4' 0YB y B - -

4 ' ( '21 22 V4

The more conventional 2 by 2 matrix representation for the cascade

connection can be obtained by eliminating V' from the system equations (recalling
3

that 1; 0). The resulting Y-matrix is

1' 4'

A A YB A

i' YA Y21 12 1212
11 A B YA + yBK-+ Y2 + YIIi

YSTANDARD k (10)
CACDA B B ~B

CASCADE 41 -Y21Y21 A Y21Y12
'2 + 22 A B

+ ii Y2 + YI

22 11 22 11

Which obviously includes products and quotients of individual 2-port terms,

thereby considerably complicating a solution by convolution.

2.1.2.3 Example 3

True parallel connections are simple and require no added open-circuited

ports. A parallel connection of one port of a 3-port network with one port of

a 2-port network to form a new 4-port network is illustrated in Figure 4.

12
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+ + + *--0-

1 2 3 4 5

1 Y A A Y A 00
11 12 13 ____

2 A A A 0 0
21 22 23

3 A A A00

YSLJB 4 0 0 0 Y Yl

5 0 0 0 22B Y

(a)

2' +

1 2' 3' 5'

A BJ YA YA YB
Y+Y1  12 13 1

2 Y2 2 Y2 0

V ' yA yA yA 0
31 32 33

5 Y B 0 10 YB

21 22___ ____

(b)

*Figure 4.a) Unconnected subnetworks
4.b) Ports 1 and 4 connected in parallel

5- 
yielding a new 4-port network. Rows

and columns 1, 4 of are added toSUB
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2.1.2.4 Example 4

A series interconnection of ports in terms of admittance parameters under

the constraint that only sums of individual subnetwork admittance parameters

appear in the result requires a little more ingenuity. An auxiliary connecting

network is introduced. The series connection of a pair of ports is illustrated

in Figure 5 using the networks of Figure 4a. Port 1 of network A is to be

series connected to port 4 of network B. A "series TV is connected to port 1

and the Y-matrix modified as shown. This operation is easily done automatically

by a computer upon receiving the command for a series connection.

2.1.2.5 Summary Comments

The series, parallel and cascade connections of pairs of ports permit very

general networks to be configured fromi subnetworks (or elements). The very

simple procedure outlined in these examples permits system equations to be

formulated treating all connections as though they are parallel with the result

that only sums of subnetwork admittance terms appear as desired.

2.2 SYSTEM EQUATION FORMATION: PART 2

Returning now to the total network consisting of linear disbributed and

lumped elements plus nonlinear and time-varying lumped elements. The network is

partitioned as shown in Figure 1. The solution procedure is as follows. First,

the short-circuit step-response matrix for the linear part of the system is

established as sums of the individual subnetwork terms as described in the

preceding section, then a matrix convolution equation is formed relating port

voltages and currents at the interface between the linear and nonlinear network

parts. The interface port voltages and currents are simultaneously constrained

by the equations for the nonlinear part of the network. Both convolution and

nonlinear equations are represented numerically by using trapezoidal (or another

appropriate technique) integration leading to a set of simultaneous algebraic

14



+0+ +0 0+

+ +

7

6
-0 3-

7 2 3 6 4 5

A yA'A A yA 0 0

7 Yll 12 13 11
y i y A -A _A 0 0

2 Y21 22 "23 21
A A A A 0 0

3 Y y -y0 0
3 431 ¥32 Y33 31

Y sub 6 -YA A _yA A 0 0
i1 21 31 11

B J

4 11 12

0" B yB
5 0 0 1 0 21 22

Figure 5a. Unconnected subnetworks with
"A" modified for series connection
of port I
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equations relating port voltages and currents at each time increment. Solution

of these equations yields desired voltages and currents at each time increment.

The step-response matrix for each linear network may be determined by

measurement or calculation. Let A(s) be the step-response matrix in the

Laplace-transform domain and Y(s) be the short-circuit admittance matrix. Then,

A(s) = - Y(s) (11)
s

-,I-- +-+
a (t) {A- A(s)} of - ! - Y (s)} (12)

s

where a(t) is the step-response matrix in the time domain.

Interface port currents and voltages are constrained by the linear part
4 4

of the network as follows. I(s), V(s) are vectors of port currents and

voltages, respectively.

I(s) =Y(s)V(s)

= - ;Ys[ (s] (13)

T(t) =) l{l(s)} , or

4 T~~ +-

where v(t) is the time derivative of the port voltage vector, v(o+ ) is the

initial value of the port voltage vector, U_1 (t) is a unit step, and * implies

convolution. The nature of the nonlinear elements is assumed to be such that

a description of the form

=f(,v(t), 1(t), t) (15)
4 4

is possible, where f(v(t), i(t), t) is a matrix whose elements are explicit
4

functions of v(t), i(t) and t. Equations 14 and 15 describe the network

completely. Given the initial conditions on v(t), we can in principle solve for

4. 4
v(t) and i(t) from Equations 14 and 15. Unless the matrix of functions is

extremely simple, the solution must be obtained numerically. Any implicit

17
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integration technique may be used. Trapezoidal (fixed or variable interval)

and Gear type algorithms [21] have proven very satisfactory. For ease of

presentation the fixed interval trapezoidal method will be presented.

Let A be the interval between time points. Then Equation 14 can be

written as

M~A) 1 r([k + 1 - j]A) + a([k j]A
i~k) =*~j=l L +

J=1

xr (jA) - v([j - lI]A + a(kA)v(o k-- 1,2,... (16)

In each increment, the step response is approximated by the average of its two

end point values and the derivative of the voltage is approximated by the

divided difference of its end point values. Notice that i(kA) in Equation 16

can be separated into two parts, one depending on the past history and the

other on the current value of v(kA), as follows:

(kA) = i (kA) + gv(kA) k = 1,2,--. (17)

ik) 0 0 (7

where

90 A) + ao(o

= [k + 1 - j]A) +a([k - ji]A (jA) - v([j - 1]A0°(A 2 j=l r

-< - -+ -+

-gov([k - 11A) + a(kA)v(o ) (18)

Thus, g is a constant matrix equal to the average step response during the

first time interval. The vector i (kA) can be treated as a set of current
0

sources whose values are determined by the past history of v(kA). For a given

value of k, i (kA) is known. In effect, a lumped, time-varying terminal
0

equivalent circuit has been obtained for the linear (lumped-distributed) part of

the overall network.

18
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For the nonlinear part, from Equation 18 we have

t

V(t) = f('(T), i(T), T)dT + v(t - A) . (19)

t-A

By the trapezoidal integration rule we have

A(kA) 2f(v(kA) , i(kA) , kA)

+ A f(v([k - ]A) , i([k - IA) , (k - 1)A)

+ v[k - 1]A) for k = 1,2,... (20)

where v(kA) is separated into two parts, one depending on the current value

4.
and the other on the past history of v and i.

The solution for the overall network is obtained by solving for v(kA) and

(kA) simultaneously from Equations 16 and 20 at each time increment k = 1,2,.--.

Note that the system of equations is algebraic even when the network contains

distributed elements. The simplified flow chart of Figure 6 summarizes the

solution procedure.

19



r INPUT NETWORK TOPOLOGY

PARTITION NETWORK INTO
LINEAR AND NONLINEAR PARTS

LINEAR NONLINEAR

CONSTRUCT STEP INPUT f(v. I, t)

RESPONSE MATRIX a(t) v(o+), i(o+)

CALCULATE go

k-k + 11

STOP

NO

CALCULATE i (kA),

f v [kl]),1((kl]) (k-l) A)

SOLVE EQUATIONS 10 and 14 I

SIMULTANEOUSLY FOR -O-A) and v(kb)

STORE AND WRITE (kA) and v(kA)

Figure 6. Simplified flow chart for solution procedure
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3.0 TIME-DOMAIN EXAMPLES

The following tutorial examples were chosen such that they could be

verified by hand calculations, and to clearly detail the solution procedure.

3.1 EXAMPLE I

Three lossless transmission lines are interconnected as shown in Figure

7a. Determine the currents il, i i3 given that vM = U_lt) volts.

The network is first redrawn, breaking the circuit into subnetworks whose

step responses are known and adding open-circuited ports at any required points

as shown in Figure 7b. Let A = I lsec. This information is supplied to the

computer causing the unconnected subnetwork matrix to be established as given

in Equation 21 (zeroes are not stored).

1 4 5 2 6 3

A A 0
1 11 12 0 0 0 0

A A

4 a21 a 0 0 0 0
21 22

B B
5 0 0 a11 a12 0 0

a SUBt = B B (21)
2 0 0 a21 a22 0 0

C C
6 0 0 0 0 11 12

3 0 0 0 0 a21 a22

The ai's for these subnetworks are given in Figure 8. A variety of subnet-

work terms frequently needed would be stored and available in a general

purpose program. New aij's may be input as equations, tables or measured

data.

Next the interconnection information is input which, in this case, causes

rows and columns 4, 5, 6 to be added yielding the connected network matrix

given in Equation 22. The individual aj are given in Figure 8.

21



431 A4

v~~ Rt 7
-T 0 0

V22
TR?1 (a)

C

v (t)A 4 6

1 g4 4

(b)

Figure 7.a) Circuit for Example 1.
R 0= 50 QT, = T 2 = 13 =10 Pjsec.

g (t) = U- t volts

7.b) Block Diagram of Circuit for Example
1 Showing Added Open-Circuited Ports
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11 222R-

0

A A B B 1

12 = 21 12 ' 21 F -U (t T)
0

A B 1
a =a ta22 11 all -- 1~lt

0

3~~ ~~C C 2F~~)2
1  Ult.

a = 22-- - _(t) + 2U_ (t - 2T) + (t 4T) +

c c -21 ,.
a1 2  a2 1  (t -") + U (t - 3T) +.

Figure 8. Subnetwork designations and
step-response matrix elements
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1 2 3 4

A 0 0 aA
1 1 1  112

B B
2 0 a22  0 a21

C C

a (t) 3 0 0 a2 2  a 2 1  (22)

A B C A B
4 a A a B a C a A+ aB

21 12 12 22 11
C

+ a llII
Notice that the primes have been dropped from the port designations to simplify

writing the equations. Interface constraints are now imposed. In general this

would involve a set of equations representing the nonlinear and source part of

the system. In this example, the constraints are simply v1  U l(t), V2 
= 0,

v3 = 0, i4 = 0. Initial conditions are v(O+) 1 v2 (o
+ ) = v3 (o+) = (o+ ) = 0.

Equation 16 can now be written for this example as

i (kA) il (kA) 2R 0 0 0 1

i 2 (kA) i02 (kA) 0 1 0 0 02Ro2 + 0 2 (23)
i3(kA) i03(kA) 0 0 0

0 i(kA) 0 0 0 v4(kA)
04 R 4

I I __j 0 __ _ __ _

where i0 1 , i0 2 ' i03' i04 must be calculated at each time increment using

Equation 18.

For k 1, i1 (A) = i0 2 (A) = i0 3(A) = i04 (A) = 0, so that from Equation 23

we obtain
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1

2R

i 2 (A) = 0 2 (24)

i3 (A)= 0

v4 (A) = 0

No change occurs in any variable until kA = T. For k = 10, i.e., k =,

1
i01(10A) = 02(10A) 1 03(104) = 0, and i04  = -(A, so that Equation 23

o
now yields

il(lOA) = 1

i2(10A) = 0 (25)

i3(10A) = 0

1
v4 (lOA) =

No further change occurs until kA = 2T, at which time il, i2, and i3 all change.

The solution proceeds as indicated with the final results shown in Figure 9.

3.2 EXAMPLE 2

Let the network of Example 1 be modified to include a nonlinear element

as shown in Figure 10. The input voltage is now v (t) = t U (t) for t < 2 psec

and vg (t) = 0 for t > 2 Psec. All other parameters for Example 1 remain

unchanged. Determine v2(t) and v3 (t).

The setup for Example 1 remains unchanged except for the new input voltage

and the constraint imposed on the output port of block "C" by the nonlinear

device. With A = 0.5 psec and the proper nonlinear constraint imposed, the

program yields the results of Figure 11, which can be easily verified by hand

calculations.
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_kZ-z/z /,, /,x

3tt

4Ro

Figure 9. Solution for Example 1, volts, amps.
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3.3 EXAMPLE 3

A network consisting of three sections of lossy but distortionless trans-

mission lines with RC loads as shown in Figure 12 is driven by a step current

generator. Determine v (t) and v2 (t). This example is one used by Silverberg

[4]. The exact solutions for this problem are

v1 (t) = (1 - e- t) volts
(26)

v2 (t) = (e
- 0 "5 - e- t)U_ 1 (t - 0.5) volts

Results computed by the computer program are shown in Figure 13 and agree with

the exact results to six decimal places.
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Y1 b ZO1 Y2' Z02 y3 f Z0 3

M1>-

Figure 12. Circuit for Example 3.

ig(t) - 2U-I(t) Amps

T = 0.5 sec, yI = Y3 s + 1

Zo1 Z0 2  Z 03 20

1.0 -

0.8

v () 0.6 -

0.4

0.2

I I I I

0 1.0 2.0 3.0 4.0 5.0

Sec

1.0-

0.8

v2t) 0.6-

0.4

* 0.2-

0 1.0 2.0 3.0 4.0 5.0

Figure 13. Solution for Example 3, voltR.
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4.0 FREQUENCY-DOMAIN EXAMPLE

As pointed out in Section 1.0, the same procedure can be used to-formulate

either time-domain or frequency-domain system equations which utilize only sums

or differences of individual subnetwork matrix elements. The resulting system

matrix is in both cases usually quite sparse with the associated computational

efficiency. The general procedure for the frequency domain is illustrated by

the following example.

Given the network consisting of transmission lines connected to a lumped

element junction as shown in Figure 14, determine the average power dissipated

in the 40 ohm, 60 ohm and 50 ohm resistors. Redraw the network adding open-

circuited ports as needed (note that this step is not unique and a number of

usable combinations can be generated). The result is shown in Figure 15.

It is sometimes convenient (particularly if the analysis program can be

used on an interactive basis) to create the final system matrix as a sequence

of steps involving only two of the subnetworks at a time. This procedure is

illustrated with the current example as follows.

Given

1 A Y A

11 12

1A2 2 YA YA
0 21 22

9593 4 5

D 3 yD -YD Y D
11 11 12

3 - -- 4 4 1 ll 12

5 YD -D YD

21 21 22

to be combined as follows.
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z 50 
40 Q2

50 Q 
1

vg Z 50 Q j 1100 Q

Figure 14. Circuit for frequency-domain example.
V = 10 volts peak.

50 0 9/0

214~ 4 0S

_____________ Z 50 lY' Q
0= 0 c = 0_j__

Figti-o 15. Block diagram with added open-circuited
ports for circuit of Figure 14.
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1i 0 ' 2 . 40

~2'0

Form the matrix for the unconnected subnetworks.

1 2 3 4 5
mA yA 0 0 0
1 1l 12 0

A YA 0 0 0

21 22

D D D
YSUB 1 113 0 0 YI1 -Y Y12 (27)

4 0 0 -Y D YII -YID
11 U 11 '12

5 0 0 yD D yD
21 '21 22

Add columns and rows 2 and 3 to obtain the new matrix representing the inter-

connection to this point.

I' 2' 4 5

if .,A Y1A 0 0
11 12

2' yA A +yD D D

2' 21 22 11 11 12
YIntermediate 1 = (28)

11 11 12

S0 y DD
21 21 22

Continuing with the next step,

32
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D9

1, A A

2' ~A~ A +D 2'

44

11 111 ~1

4 0 (29) D -YD

ySUB 2 D D D (9

8 00 yC yC
11l 12

9' 0 0 0 0 'y2 C y

Add rows and columns 4 and 8 to obtain the new matrix representing the inter-

connection with "C" added.

1f 2' 4' 5 9'

1' 11 120

2' A YA + D 0

D D C D C
y Intermediate 2 4 0 Y11 11+ 11 -Y21 y12 (30)

'21 '21 '22 0

9' 0 0 'y2l 0 C
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The next step is to connect subnetwork "B."

B B 1

D 61

11 1
y SUB 3 0(31)

B ~B 71

6 7'

Add rows and columns 5 and 6 to obtain the new matrix representing the final

step of interconnection in which network "B" is connected. The result for the

entire combined network is as follows.

1'1 2' 4'f 5' 7'f 9'

it Y1 A Y A 0 0 0 0

2' YA YA + D
21 22 11~l 11 120 0

D D C D C
Yne =4' 0 -11y 1 1 + y1 1  -Y 1 12 (32)

5 0 yD -YD yB +yD yB 0
5' "21 ~ 21 11 ~22 1~2 0I

7' 0 0 0 y B2l 0

91 0 0yC 0 C
0 02 22

34



From Figure 15 the output ports 7' and 9' are short circuited and ports 2', 4'

and 5' are open circuited, so that

v' v'= 0 and i i i=' = 0
7 9 2 4 5

The input is given as v' 10 volts peak. The system equation for the combined
1

network is thus

1 10

~0 [v 2
2

0 vi
4

Y e(33)0 new ,
v5

17I 0

19 0

These equations can be straightforwardly solved for the currents it, i, and i'
1' 7'

and the voltages vI, v V since all elements of Y are known. From theseand tevlaevv4, 5  new

currents calculate the power delivered to the resistors. The 40 Q resistor

receives 91.6 mwatts, the 60 9 resistor 87.9 mwatts, and the 50 Q resistor 70.5

mwatts.
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5.0 TIME-DOMAIN MODELS FOR TRANSMISSION LINES

The techniques of Section 2.2 provide not only a very general analysis

tool, but also provide a powerful scheme for generating simple time-domain

models for complex structures. Modeling will be illustrated for lossless

transmission lines. Lossy transmission lines, coupled lines and other

structures will be covered in a future report. These models may be used to

increase the power of existing general purpose circuit analysis programs such as

SCEPTRE or SPICE by providing transmission line and other distributed element

capability not currenlty available. Alternatively, the models may form the

basis of new analysis programs.

5.1 STEP-RESPONSE OF LOSSLESS TRANSMISSION LINES

A necessary ingredient for time-domain model derivation using the techniques

of Section 2.2 is the short-circuit current step response of the structure to

be modeled. This step response may be determined experimentally or analytically.

For the lossless transmission line the step response may be determined as

follows.

P 5.1.1 Unterminated Line

Figure 16 shows schematically a lossless transmission line of length, "k,"

characteristic admittance "G o," and propagation factor 'j3." Since j6 = jwk/v,

where w is radian frequency and v is phase velocity, jUQ corresponds to jeT,

where T is Z/v equal to the one-way time delay through the line. Next,

transform to the Laplace transform domain replacing jw by S (the Laplace

variable).

The admittance matrix for the lossless transmission line in the Laplace

domain is
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'4 '

0 0

1 Go, j 2
0 0

j = jW k/v = jWT +-+ sT

Figure 16. Lossless, Unterminated
Transmission Line
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-1
coth sT[co- T sinh ST

Y(s) = G (34)

0 __coth s
sinh sT

which can be written in terms of exponentials as follows.

eS T + e -2
ST -ST ST -ST

e -e e -e
Y(s) = G - (35)

oST -sT
-2 e + e

ST -ST ST -ST
e -e e -e

Dividing the denominator of each term into the numerator yields the following

form.

+4 11 Y12
Y(s) = G (36)

o 21 Y22

where

e2ST -4sT
Y 11 Y22 1 + 2 {e + e- +".'}

Y =Y =-2 {e- S T + e - 3 s T + e + "'.}

Taking the inverse Laplace transform of Y(s) would yield the time-domain impulse

response. The step response is obtained from the inverse transform of 1 Y(s).s

Designate the step-response matrix by a(t).

a l(t) a12(t)
a (t) =  -i1Y(S) ""(37)

a2 1(t) a2 2(t)

where
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a11 = a2 2 = Go{U I(t) + 2u- (t - 2T) + 2U 1 (t - 4T) +..}

a12 = a21 = -2G {U 1(t - T) + U- (t - 3T) + U-1 (t - 5T) + ''}

and U _(-) is the unit step function.

5.1.2 "Properly" Terminated Lines

If a "proper" G termination is used on the input or output of the lossless

0

transmission line, the step response reduces to a simple closed form rather

than the infinite series of the unterminated line. The properly terminated

form has some advantages when used with SCEPTRE and SPICE. If a termination

different from G is desired, an appropriate negative or positive resistor0

is inserted in series with the G termination. Figure 17 gives the step0

response for input and output terminated lines.

5.2 ASSOCIATED MODEL

Each model is associated with (or derived using) a particular numerical

integration algorithm. Trapezoidal integration will be used in the illus-

trations.

Consider the input terminated line of Figure 17a. From Section 2.2 (Eq. 14)

i~)+ t*$()+- + (38
(t = (t)*v(t) + a(t() (38)

For fixed time increment "A," the discretized form of Equation 38 is

ik)-i (kA) ++ +- (Ma) (39)

where i (kA) is a function of past values only and g is a constant. This0

means that only i(kA) and v(kA) are functions of the current time increment,

kA. The discretized equation for the transmission line of Figure 17a takes

the following form.
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0 0

a1  a where a1 1  - [U (t) + U (t -2T)]

a(t)
a 2 1  a 2 2  a 12 ~a21 =-G 0U- (t-T)

a 22 ~G 0U (t)

(a)

00

a 11  a 12  where a 11  G 0U 1(t)

a(t)
a 21  a 22  a 12  a 21 =-G0U-1 (t -)

G
a2  -- U t + --( 2T)]

(b)

Figure 17.a) Step Response for Input
Terminated Line

b) Step Response for Output
Terminated Line
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SW(kA) io0(kA) 1 V11  1 2  V (kA) (40)

L2 k) L i0 2 (kA) g21  g2 2  v2 (kA )

where

Gi -a (A) + ao

g = Ea [ai(A) + a (0 +) 0
912 = 2 [12 ( & + 12 0 + ]  0

1+
g2 a21 (A) + a2 1

( 0 )1 0

= [a22 (A) + a 2 (0)] G

Thus, i0 1 (kA) and i0 2(A) maybe interpreted as dependent current sources whose

values may be calculated from results obtained at prior time increments. The

simple model of Figure 18 results.

iI (A) i2 (kA)

-- > •O - --

v (kA) - °2 GO  v2 (kA)

O 1 (kA) i02 (kA) L

Figure 18. Lossless Transmission Line Model

The two dependent current sources can be evaluated from Equation 39. For

k = 0, vl(O) and v2 (0) must be supplied as initial conditions. For k > I

41
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Covl(0)

i (kA) = 1 [1+ U_ (kA - 2T)] - v(0)G U_(kA - T)
01. 2 -1 2 0-i

C G k-i- 0 V((k - )A) + -Y {[2 + U_((k - j + 1)A - 2T)

+ U 1 ((k - j)A - 2T)][v1 (JA) - vI((j - l)A)]

- 2[U1 ((k - j + l)A - T) + U 1((k - j)A - T)][v2 (jA) - v2 ((j - I)A)]}

(41)

02(W) G= G voI(O)U_ (kA - T) + Gov2(O) - Gov 2 ((k- 1)A)

G k-i
+-0 Y {2[v 2 (jA) - v2 ((j - I)A)] - [Ul((k - j + l)A - T)

j=l 2

+ U_1 ((k - j)A - T)I[Vl(jA) - v ((j - 1)A)]} (42)

These equations are easily implemented yielding an efficient transmission line

model for time-domain calculations.
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6.0 INSTANTANEOUS REFELCTION COEFFICIENT

A very general concept that appears quite promising in dealing with complex

circuits is that of a time-varying reflection coefficient. When used in

conjunction with "fractional time" techniques, the time-varying reflection

coefficient permits certain types of energy relationships to be deduced in a

simple fashion. To demonstrate the principle, consider the circuit shown in

Figure 19. The circuit consists of a lossless transmission line driven by

a triangular voltage pulse. Generator impedance is identical to the character-

istic impedance of the transmission line. Terminating the line is a nonlinear

resistor whose characteristics (see Figure 19b) are such that for terminal

voltage amplitudes less than V 1the resistor looks like an open circuit. For

voltages between V nd V 2, the resistor has a resistance of Z 0ohms, i.e.,

equal to the transmission line characteristic impedance. For voltages greater

than V 2the terminating resistor looks like a short circuit. Thus, the

reflection coefficient, p, of this resistor as viewed from the transmission

line will be a function of the terminal voltage and, since that voltage is

time-varying, the reflection coefficient is itself time varying. In fact, the

reflection coefficient is p = +1 for voltages less than V1 . p = 0 for voltages

between V 1 and V 2 P and P =-1 for voltages greater than V 2. The fraction of

2incident instantaneous power absorbed by the nonlinear resistor is 1 - P

The voltage interval V -V V during which power is absorbed and the correspond-

ing time intervals for a triangular input pulse are shown in Figures 19c and

19d. As can be seen from the sketches, the fractional time for which p = 0

decreases as the input pulse amplitude increases. Since in this case power

is absorbed only when p -0, the total energy (product of time and power)

absorbed by the nonlinear resistor decreases as the input pulse amplitude

increases. The energy reflected by the nonlinear termination is absorbed by
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R Rg o [1* T1 l-

+ 
0  Stepwise

vin vJR Nonlinear
Resistor

o0

(a)

Open Circuit

(ohms)

RR o 0
R- 0 iShort Circuit

0 v1  v 2  v

(b)

yin

V1

Att

(c)

vin

v 2

v1

*tk-: , (d)

Figure 19. Instantaneous Reflection Coefficient and
Fractional Time Calculations for Predicting
Bounds on Absorbed Energy (Explanation in text)
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the matched load at the source end of the line. The interesting point is

that for this and related type v - i characteristic nonlinear devices, one

can say that if the input energy increases by a factor K, the energy absorbed

by the device will increase by a factor less than K, i.e, linear extrapolation

provides an upper bound estimate for energy absorbed.

Many semiconductor elements have v - i characteristics that yield

results similar to that of the above example. As another simple example,

consider a square-law diode on the end of a transmission line, as shown in

Figure 20a. Since the v - i relation for the diode is

i - kV 2  (43)

d d

where k is a constant, the instantaneous admittance of the diode is

id
d= = kv (44)
vd

Diode reflection coefficient referenced to the transmission line is

Y - kVd

d  Y + kV (45)

and after some algebra

2 4kYo Vd

2 - 2 2 (46)
(kVd + Yo)

A plot of 1 - P2 versus V is given in Figure 20b. The percentage of incident
d Vd

power absorbed by the diode first increases and then decreases with increasing

terminal voltage. Maximum absorbed power occurs at the "match point" where

the apparent resistance of the diode is equal to the characteristic impedance

of the transmission line.

Interpretation of power absorbed in terms of time-varying instantaneous

reflection coefficient also applies to circuits with reactance. To illustrate

this point of view a sequence of parallel connected ideal lumped elements are
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R = R k - T1  >

V n R t0

(a)

21 d

V !
m Vd

"Match Point" Vm

(b)

Figure 20. Percent Power Absorbed by Diode as a
Function of Diode Voltage

46

.,. ...... .....



considered as depicted in Figure 21. Each of the circuits is considered to

be driven by a sinusoidal current source in parallel with a resistance. This

source could represent a Norton equivalent of a transmission line.

In Figure 21a a single resistor is driven by the source. The instantaneous

impedance of the load resistor is independent of time and its reflection

coefficient is a real constant. Instantaneous power absorbed is

12R2

PR VRiR P sin 2t (47)PR Rin R

where

RR
R-
pR+R 0

Time average power absorbed is

P =R I2/2R (48)
avg p o

Now consider what happens when a shunt capacitor is introduced as shown in

Figure 21b.

The capacitor alone has an instantaneous impedance given by

V 1 icdt V

Zc(t) C I ic (49)
C C iC

where VC = time derivative of Vc(t). For a sinusoidal input the instantaneous

impedance of the capacitor varies from zero (or short circuit) to infinite

(or open circuit) each quarter cycle and is given by

ZW(t) tan wt (50)C Isin C

Thus, in Figure 21b the constant instantaneous impedance of the resistor R is

now paralleled by a time-varying instantaneous resistance that varies from a

short circuit to an open circuit each quarter cycle. Since the time-varying

reflection coefficient of the parallel RC combination will now deviate from
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R 0 R

R vi R K
I sin t I sin t 0 ~ {

(a) (b)

sin t E M L IV

(c)

Figure 21. Circuits for Demonstrating "Instantaneous
Impedance" Conecpt for Sinusoidal Excitation
with Reactive Elements Present
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that of the resistor alone and will indeed spend a significant fraction of time

dewelling about the -1 value corresponding to the zero impedance interval

of the capacitor, it is apparent that the power absorbed by the resistor

should decrease. Just how much it decreases will depend upon the precise

time-varying instantaneous impedance of the capacitor and hence upon the

value of capacitance C and the frequency w of the drive signal. Calculating

the instantaneous power absorbed by the resistor when paralleled by a

capcitor yields

1I2R 2

op0 2 sin 2(wt -wR C) (1.1R[l + (wR C)
* which for C > 0 yields a decrease in amplitude of instantaneous power absorbed

* by the resistor. Time average power is

P =R21 /2R[l + CwR C) 2 (52)
avg po0 p

which again shows the anticipated decrease in power absorbed caused by

paralleling the resistor with the instantaneous impedance of the capacitor.

The important point of the preceeding discussion is our ability to use

time-varying reflection coefficient to predict decreases or increases in

power (or energy) absorbed in an element as a result of adding some new

element to the circuit or of increasing the input signal level. This

technique is obviously a very powerful tool where bounds or limits on power

(or energy) are required.

As a further indication of the power of this "way of thinking" about

circuits, consider the 3 elements in parallel as shown in Figure 21c. Here

we have added both L and C elements in shunt with the resistor. The instan-

* taneous impedances of both the capacitor and inductor are time-varying. The

formal relationship for the capacitor was given above. For the inductor the

* instantaneous impedance is
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diL/dt VL  VL
ZL(t)=L L L _ (53)

L V dt

For sinusoidal input signal the instantaneous impedance of the inductor

varies from infinite to zero each quarter cycle and is given by

ZL (t) = wL cot Wt (54)

Thus, in Figure 21c the constant instantaneous impedance of the resistor R

is now paralleled by a pair of time-varying instantaneous impedances one of

which varies from open to short and the other from short to open over each

quarter cycle of the sinusoidal signal. The net result is that the instantaneous

reflection coefficient of the combination deviates from the value for the

resistor alone, and for every case except one, the power absorbed by the

resistor is decreased by the presence of L and C in parallel. The decrease

in power absorbed is due to the fact that the instantaneous reflection

coefficient of the combination "dwells" a significant fraction of time about

the high reflection values produced by the reactive elements over a portion

of each quarter cycle. Instantaneous power absorbed by the resistor is

2 2

PR(t) = op sin 2  t - wRpC - (55)

R~7 + - ,jj

which is less than the power absorbed by the resistor alone for all cases

except the case where

2 1
LC

which is the situation we normally call resonance. From the point of view

of instantaneous impedance and reflection coefficient, resonance occurs when

two time-varying instantaneous impedances combine in such fashion as to

Pt produce a resultant constant instantaneous impedance. Time average power

absorbed is
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Pavg R)0(56

2R R C1 + w (56

which again shows the anticipated decrease in power absorbed (except for the

resonant case tiL -L ) caused by the shunting effect of the strongly varying

instantaneous impedances of the capacitor and inductor. Note clearly that it

is the fraction of time that the resultant instantaneous reflection coefficient

"dwells" near the maximum absorbing point that determines the power absorbed.

The above discussion and examples introduce the concepts of instantaneousI impedance and reflection coefficient and apply them, in combination with

fractional time calculations, for predictive extrapolation of absorbed power.

The concepts are exceptionally general and nay be applied with all types of

elements, linear and nonlinear, active and passive. While it requires some

time to become accustomed to thinking in these rather unorthodox terms, the

approach seems promising for general purpose analysis of a number of EMC

problems. This discussion represents only the beginning.

51



7.0 CONCLUSIONS

A new technique suitable for time-domain analysis of a very general class of

lumped/distributed networks is introduced. The technique is useful in a wide

range of EMC problems. In this report the basic procedure is described and

illustrated with examples. Time-domain models of transmission lines and

other structures can also be determined using the analysis technique. Such

models are useful in existing CAD programs such as SCEPTRE and SPICE. This

feature is illustrated by generating an exceptionally simple model for lossless

transmission lines. Finally, a novel concept using time-varying reflection

coefficients is introduced.

I
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